یک روش جدید براساس انتخاب ویژگی وزن برای بهبود یافتن طبقه بندی مجموعه داده ژن کوچک آرایه
A Novel Distinguishability Based Weighted Feature Selection Algorithms for Improved Classification of Gene Microarray Dataset
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
thescipub.com |
سال انتشار |
2014 |
فرمت فایل |
PDF |
کد مقاله |
19432 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Data mining played vital role in comprehending, analyzing,
understanding and interpreting microarray technology expression data.
That includes search for genes that had similar or correlated patterns of
expression. For that, the feature selection was one of the frequently used
important techniques for data preprocessing. Many feature selection
algorithms had been developed. Yet the persisting problem was in
selecting optimal subset of features from the colon tumor dataset. The
use of feature selection reduced the number of features, removed
irrelevant, redundant or noise data thereby improving the accuracy,
efficiency, applicability and understandability of the learning process.
Dimensionality reduction and feature subset selection were important
components of classification techniques. In this study, the authors
presented a comparative study of existing six feature selection methods
and the proposed two algorithms of their own.
کلمات کلیدی مقاله (فارسی):
انتخاب ویژگی ، میکرو آرایه داده ها ، طبقه بندی ، بیز
کلمات کلیدی مقاله (انگلیسی):
Keywords: Feature Selection, Microarray Data, Classification, C4.5, Bayes
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.