پیش بینی رشد اقتصادی با شبکه عصبی مصنوعی با ماشین یادگیری بر پایه پارامترهای تجارت، واردات و صادرات
Economic growth forecasting by artificial neural network with extreme learning machine based on trade, import and export parameters
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
www.journals.elsevier.comcomputers-in-human-behavior |
سال انتشار |
December 2016 |
فرمت فایل |
PDF |
کد مقاله |
845 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Economic growth may be developed based on trade, imports and exports parameters. The main goal in this study was to predict the economic growth based on trade in services, exports of goods and services, imports of goods and services, trade and merchandise trade on the economic growth. Gross domestic product (GDP) was used as economic growth indicator. The main purpose of this research is to develop and apply the artificial neural network (ANN) with back propagation learning (BP) algorithm and with extreme learning machine (ELM) in order predict GDP growth rate. The aim was to compare the results of BP and ELM prediction accuracy for the GDP growth rate prediction based on the trade data. Based on results, it was demonstrated that ELM can be utilized effectively in applications of GDP growth rate forecasting.
کلمات کلیدی مقاله (فارسی):
شبکه های عصبی مصنوعی؛ یادگیری ماشین افراطی؛ پیش بینی؛ تولید ناخالص داخلی
کلمات کلیدی مقاله (انگلیسی):
Artificial neural network; Extreme learning machine; Forecasting; Gross domestic product
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.