طبقه بندی متن با استفاده از چند مثال برچسب
Text classification using a few labeled examples
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
sciencedirect |
سال انتشار |
2013 |
فرمت فایل |
PDF |
کد مقاله |
15607 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Supervised text classifiers need to learn from many labeled examples to achieve a high accuracy. However, in a real context, sufficient labeled examples are not always available because human labeling is enormously time-consuming. For this reason, there has been recent interest in methods that are capable of obtaining a high accuracy when the size of the training set is small.
In this paper we introduce a new single label text classification method that performs better than baseline methods when the number of labeled examples is small. Differently from most of the existing methods that usually make use of a vector of features composed of weighted words, the proposed approach uses a structured vector of features, composed of weighted pairs of words.
The proposed vector of features is automatically learned, given a set of documents, using a global method for term extraction based on the Latent Dirichlet Allocation implemented as the Probabilistic Topic Model. Experiments performed using a small percentage of the original training set (about 1%) confirmed our theories.
کلمات کلیدی مقاله (فارسی):
استخراج متن؛ طبقه بندی متن؛ استخراج مدت؛ موضوع احتمالاتی؛ مدل؛ داده کاوی
کلمات کلیدی مقاله (انگلیسی):
Text mining; Text classification; Term extraction; Probabilistic topic; Model; Data mining
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.