درک داده ها تا چه حد بزرگ منجر به آسیب پذیری های شبکه های اجتماعی می شوند
Understanding how big data leads to social networking vulnerability
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
http://www.journals.elsevier.com/computers-in-human-behavior |
سال انتشار |
April 2016 |
فرمت فایل |
PDF |
کد مقاله |
10399 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Although the term “Big Data” is often used to refer to large datasets generated by science and engineering or business analytics efforts, increasingly it is used to refer to social networking websites and the enormous quantities of personal information, posts, and networking activities contained therein. The quantity and sensitive nature of this information constitutes both a fascinating means of inferring sociological parameters and a grave risk for security of privacy. The present study aimed to find evidence in the literature that malware has already adapted, to a significant degree, to this specific form of Big Data. Evidence of the potential for abuse of personal information was found: predictive models for personal traits of Facebook users are alarmingly effective with only a minimal depth of information, “Likes”, It is likely that more complex forms of information (e.g. posts, photos, connections, statuses) could lead to an unprecedented level of intrusiveness and familiarity with sensitive personal information. Support for the view that this potential for abuse of private information is being exploited was found in research describing the rapid adaptation of malware to social networking sites, for the purposes of social engineering and involuntary surrendering of personal information.
کلمات کلیدی مقاله (فارسی):
اطلاعات بزرگ؛ شبکه اجتماعی؛ مهندسی اجتماعی؛ مدل های پیش بینی
کلمات کلیدی مقاله (انگلیسی):
Big data; Social networking; Social engineering; Predictive models
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.