بهبود جوامع یادگیری الکترونیکی از طریق ترکیب بهینه از گروه های یادگیری چند رشته
Improving e-learning communities through optimal composition of multidisciplinary learning groups
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
sciencedirect |
سال انتشار |
2013 |
فرمت فایل |
PDF |
کد مقاله |
15496 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
The current study proposes an intelligent approach to compose optimal learning groups in which the members have different domain backgrounds. The approach is based on a well-known evolutionary algorithm – Particle Swarm Optimization. The authors claim that quantifying various indicators, such as background diversity and similarity between the type of interest of the participants, within a group and between groups can positively impact on building learning groups.
The algorithm is integrated in an ontology-based e-learning system, designed to create self-built educating communities, in which a trainees goes through the education process, gains points through achievements and ultimately becomes a trainer. When creating a new account, the newly created trainee is asked to self asses himself by filling out a form. The resulting profile is used to assign the user to the most suitable learning group. We propose to assign him by the following rule: maximizing the diversity within a group (due to the fact that multidisciplinary teams are more challenging) and minimizing the diversity between groups (all the groups should have similar composition), meaning a group will have members with similar interests.
The study is presented in the context of group building strategies in adults’ education.
کلمات کلیدی مقاله (فارسی):
گروه های یادگیری چند رشته ای؛ ذرات بهینه سازی ازدحام؛ جوامع یادگیری الکترونیکی
کلمات کلیدی مقاله (انگلیسی):
Multidisciplinary learning groups; Particle Swarm Optimization; E-learning communities
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.