با استفاده از انتخاب ویژگی به عنوان تعیین دقت معیار در داده کاوی بالینی
USING FEATURE SELECTION AS ACCURACY BENCHMARKING IN CLINICAL DATA MINING
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
thescipub.com |
سال انتشار |
2013 |
فرمت فایل |
PDF |
کد مقاله |
26922 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Automated prediction of new patients’ disease diagnosis based on data mining analysis on historical data is
proven to be an extremely useful tool in the medical innovation. There are several studies focusing on this
particular aspect. The objective of this study is two-fold. First, we look into three different classifiers, which
are the Naïve Bayes, Multilayer Perceptron (MLP) and Decision Tree J48 to predict the diagnosis results.
Next, we investigate the effects of feature selection in such experiments. We also compare the experimental
results with the study of Comparative Disease Profile (CDP) using the same dataset. Results have shown
that the Naive Bayes provides the best result in terms of accuracy in our experiments and in comparison
with CDP. However, we suggest using Multilayer Perceptron since the variables used in our experiments
are inter-dependent among each other. In addition, MLP has shown better accuracy than CDP.
کلمات کلیدی مقاله (فارسی):
داده کاوي، بهداشت و درمان، بيماري قلبي، پرسپترون چند، ساده و بي تکلف بيز، J48
کلمات کلیدی مقاله (انگلیسی):
Keywords: Data Mining, Healthcare, Heart Disease, Multilayer Perceptron, Naive Bayes, J48
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.