تقسیم بندی تصویر ماهواره ای کشاورزی با استفاده از یک شبکه عصبی مصنوعی Hopfield را اصلاح
Agriculture satellite image segmentation using a modified artificial Hopfield neural network
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
sciencedirect |
سال انتشار |
2013 |
فرمت فایل |
PDF |
کد مقاله |
15520 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Beekeeping plays an important role in increasing and diversifying the incomes of many rural communities in Kingdom of Saudi Arabia. However, despite the region’s relatively good rainfall, which results in better forage conditions, bees and beekeepers are greatly affected by seasonal shortages of bee forage. Because of these shortages, beekeepers must continually move their colonies in search of better forage. The aim of this paper is to determine the actual bee forage areas with specific characteristics like population density, ecological distribution, flowering phenology based on color satellite image segmentation. Satellite images are currently used as an efficient tool for agricultural management and monitoring. It is also one of the most difficult image segmentation problems due to factors like environmental conditions, poor resolution and poor illumination. Pixel clustering is a popular way of determining the homogeneous image regions, corresponding to the different land cover types, based on their spectral properties. In this paper Hopfield neural network (HNN) is introduced as Pixel clustering based segmentation method for agriculture satellite images.
کلمات کلیدی مقاله (فارسی):
مرغداری؛ شبکه های عصبی Hopfield را. ماهواره تقسیم بندی تصویر؛ خوشه پیکسل
کلمات کلیدی مقاله (انگلیسی):
Beekeeping; Hopfield neural network; Satellite image segmentation; Pixel clustering
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.