یک روش معادله انتگرال برای معادلات انتقال گرما نفوذ ناپایدار
An integral equation approach to the unsteady convection–diffusion equations
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Applied Mathematics and Computation 274(2016)55–64 |
سال انتشار |
2016 |
فرمت فایل |
PDF |
کد مقاله |
25020 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
An integral equation approach is proposed to solve the unsteady convection–diffusion equations. In this approach, the second order Adams–Moulton method is firstly utilized for the time discretization. Then by using the Green’s function of the Laplace equation in the series form, the convection–diffusion equation is transformed into an integral equation that is further converted into an algebraic equation system. The accuracy, convergence and the stability of this integral equation approach are examined by four examples. In comparison with the characteristic variational multiscale method and the finite volume element method, the integral equation approach shows a higher accuracy. Compared with the finite volume element method the integral equation approach has a better convergence. In solving the convection dominated convection–diffusion problems the integral equation approach demonstrates good stability.
کلمات کلیدی مقاله (فارسی):
روش معادله انتگرال، معادله همرفت نفوذ، حجم روش المان محدود
کلمات کلیدی مقاله (انگلیسی):
Integral equation approach, Convection–diffusion equation, Finite volume element method
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.