چند زمانه و سطح برگ multiresolution بازیابی شاخص برای نظارت بر محصول برنج محلی عملیاتی
Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Remote Sensing of Environment, Volume 187 |
سال انتشار |
2016 |
فرمت فایل |
PDF |
کد مقاله |
22155 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
This paper presents an operational chain for high-resolution leaf area index (LAI) retrieval from multiresolution satellite data specifically developed for Mediterranean rice areas. The proposed methodology is based on the inversion of the PROSAIL radiative transfer model through the state-of-the-art nonlinear Gaussian process regression (GPR) method. Landsat and SPOT5 data were used for multitemporal LAI retrievals at high-resolution. LAI estimates were validated using time series of in situ LAI measurements collected during the rice season in Spain and Italy. Ground LAI data were collected with smartphones using PocketLAI, a specific phone application for LAI estimation. Temporal evolution of the LAI estimates using Landsat and SPOT5 data followed consistently the temporal evolution of the in situ LAI measurements acquired on several Mediterranean rice varieties. The estimates had a root-mean-square-error (RMSE) of 0.39 and 0.51 m2/m2 in Spain and 0.38 and 0.47 m2/m2 in Italy for Landsat and SPOT5 respectively, with a strong correlation (R2 > 0.92) for both cases. Spatial-temporal assessment of the estimated LAI from Landsat and SPOT5 data confirmed the robustness and consistency of the retrieval chain. This paper demonstrates the importance of an adequate characterization of the underlying rice background in order to address changes in background condition related to water management. Results highlight the potential of the proposed chain for deriving multitemporal near real-time decametric LAI maps fundamental for operational rice crop monitoring, and demonstrate the readiness of the proposed method for the processing of data such as the recently launched Sentinel-2.
کلمات کلیدی مقاله (فارسی):
نظارت بر محصول؛ برنج؛ شاخص سطح برگ (LAI) بازیابی؛ PROSAIL؛ گوشی های هوشمند؛ رگرسیون روند گاوسی (GPR)؛ لندست؛ SPOT5 TAKE5
کلمات کلیدی مقاله (انگلیسی):
Crop monitoring; Rice; Leaf area index (LAI) retrieval; PROSAIL; Smartphone; Gaussian process regression (GPR); Landsat; SPOT5 Take5
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.