پروتکل تطبیقی جمع اوری داده ها با استفاده از تقویت آموزش برای شبکه های فضایی تک کاره
ADOPEL: ADAPTIVE DATA COLLECTION PROTOCOL USING REINFORCEMENT LEARNING FOR VANETS
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
thescipub.com |
سال انتشار |
2014 |
فرمت فایل |
PDF |
کد مقاله |
24231 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Efficient propagation of information over a vehicular wireless network has usually remained the focus of
the research community. Although, scanty contributions have been made in the field of vehicular data
collection and more especially in applying learning techniques to such a very changing networking scheme.
These smart learning approaches excel in making the collecting operation more reactive to nodes mobility
and topology changes compared to traditional techniques where a simple adaptation of MANETs
propositions was carried out. To grasp the efficiency opportunities offered by these learning techniques, an
Adaptive Data collection Protocol using reinforcement Learning (ADOPEL) is proposed for VANETs. The
proposal is based on a distributed learning algorithm on which a reward function is defined. This latter takes
into account the delay and the number of aggregatable packets. The Q-learning technique offers to vehicles
the opportunity to optimize their interactions with the very dynamic environment through their experience
in the network. Compared to non-learning schemes, our proposal confirms its efficiency and achieves a
good tradeoff between delay and collection ratio.
کلمات کلیدی مقاله (فارسی):
جمع آوري داده شبکه هاي فضايي تک کاره ، روشنايي ، نسبت مجموعه ، تعداد هاپ
کلمات کلیدی مقاله (انگلیسی):
Keywords: Data Collection, Vehicular Ad Hoc Networks (VANETs), Reinforcement Learning, Qlearning, Collection Ratio, Number of Hops
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.