پایداری مداری امواج انفرادی برای معادله کندو
Orbital stability of solitary waves for Kundu equation
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
J. Differential Equations |
سال انتشار |
2009 |
فرمت فایل |
PDF |
کد مقاله |
22080 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
In this paper, we consider the Kundu equation which is not a standard Hamiltonian system. The abstract orbital stability theory proposed by Grillakis et al. (1987, 1990) cannot be applied directly to study orbital stability of solitary waves for this equation. Motivated by the idea of Guo and Wu (1995), we construct three invariants of motion and use detailed spectral analysis to obtain orbital stability of solitary waves for Kundu equation. Since Kundu equation is more complex than the derivative Schrödinger equation, we utilize some techniques to overcome some difficulties in this paper. It should be pointed out that the results obtained in this paper are more general than those obtained by Guo and Wu (1995). We present a sufficient condition under which solitary waves are orbitally stable for 2c3 + s2υ < 0, while Guo and Wu (1995) only considered the case 2c3 + s2υ > 0. We obtain the
results on orbital stability of solitary waves for the derivative Schrödinger equation given by Colin and Ohta (2006) as a corollary in this paper. Furthermore, we obtain orbital stability of solitary waves for Chen–Lee–Lin equation and Gerdjikov–Ivanov equation, respectively.
کلمات کلیدی مقاله (فارسی):
معادله کوندو، موج تنها، ثبات مداری، تجزیه و تحلیل طیفی
کلمات کلیدی مقاله (انگلیسی):
Kundu equation, Solitary wave, Orbital stability, Spectral analysis
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.