پایداری روشهای مختلف. روش های مرکزی برای قوانین حفاظت هذلولی با شرایط منبع
On stability of difference schemes. Central schemes for hyperbolic conservation laws with source terms
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Applied Numerical Mathematics |
سال انتشار |
2012 |
فرمت فایل |
PDF |
کد مقاله |
22283 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
The stability of nonlinear explicit difference schemes with not, in general, open domains of the scheme operators are studied. For the case of path-connected, bounded, and Lipschitz domains, we establish the notion that a multi-level nonlinear explicit scheme is stable iff (if and only if) the corresponding scheme in variations is stable. A new modification of the central Lax–Friedrichs (LxF) scheme is developed to be of the second-order accuracy. The modified scheme is based on nonstaggered grids. A monotone piecewise cubic interpolation is used in the central scheme to give an accurate approximation for the model in question. The stability of the modified scheme is investigated. Some versions of the modified scheme are tested on several conservation laws, and the scheme is found to be accurate and robust. As applied to hyperbolic conservation laws with, in general, stiff source terms, it is constructed a second-order nonstaggered central scheme based on operator-splitting techniques.
کلمات کلیدی مقاله (فارسی):
معادلات هذلولی،پایداری، روش در ناپایداری
کلمات کلیدی مقاله (انگلیسی):
Hyperbolic equations, Stability, Scheme in variation
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.