یک روش جدید بر اساس خوشه بندی فازی ژنتیکی و سازگاری شبکه های عصبی برای پیش بینی فروش
A NOVEL APPROACH BASED ON GENETIC FUZZY CLUSTERING AND ADAPTIVE NEURAL NETWORKS FOR SALES FORECASTING
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
thescipub.com |
سال انتشار |
2013 |
فرمت فایل |
PDF |
کد مقاله |
26946 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
This article proposes a new hybrid sales forecasting system based on genetic fuzzy clustering and Back-
Propagation (BP) Neural Networks with adaptive learning rate (GFCBPN).The proposed architecture consists of
three stages: (1) utilizing Winter’s Exponential Smoothing method and Fuzzy C-Means clustering, all normalized
data records will be categorized into k clusters; (2) using an adapted Genetic Fuzzy System (MCGFS), the fuzzy
rules of membership levels to each cluster will be extracted; (3) each cluster will be fed into parallel BP networks
with a learning rate adapted as the level of cluster membership of training data records. Compared to previous
researches which use Hard clustering, this research uses the fuzzy clustering which capable to increase the
number of elements of each cluster and consequently improve the accuracy of the proposed forecasting system.
Printed Circuit Board (PCB) will be utilized as a case study to evaluate the precision of our proposed system.
Experimental results show that the proposed model outperforms the previous and traditional approaches.
Therefore, it is a very promising method for financial forecasting.
کلمات کلیدی مقاله (فارسی):
پيش بيني فروش، خوشه بندي فازي، سيستم فازي ژنتيک، مدار چاپي، برگشت انتشار شبکه، روش هوش ترکيبي
کلمات کلیدی مقاله (انگلیسی):
Keywords: Sales Forecasting, Fuzzy Clustering, Genetic Fuzzy System, Printed Circuit Boards, Back Propagation Network, Hybrid Intelligence Approach
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.