مقایسه مدل های رگرسیون لجستیک فضایی و و رگرسیون معمولی فضایی برای نقشه برداری خطر مین های زمینی
Comparison of spatial and a spatial logistic regression models for landmine risk mapping
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Applied Geography |
سال انتشار |
2016 |
فرمت فایل |
PDF |
کد مقاله |
22868 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Landmines continue to affect the lives of millions of people living in war-torn countries. One major challenge in humanitarian mine action (HMA) is finding new and integrated approaches to land release, which remains a slow and costly process. The use of geographic information systems (GIS) in HMA can improve the land release process by efficient mapping and prioritizing of landmine risk areas. This study explores the usage of aspatial and spatial regression techniques to construct a predictive geo-statistical model for landmine risk mapping in a small 160 km2 municipality in Bosnia and Herzegovina (BiH) and a large 4500 km2 region in Colombia. The first application of logistic geographically weighted regression to landmine risk mapping is presented. The results show that in the BiH study area, the effect of local parameters that influence the distribution of landmine risk varies significantly across the study area. Conversely, in the Colombia case study the effect of explanatory variables remains more homogeneous over the study area. We produced two landmine risk maps for each study area, based on aspatial and spatial regression models. Risk maps are classified into five classes, i.e. very low, low, medium, high, and very high risk. The landmine risk maps created through the usage of these innovative methodologies improve the assessment of risk and prioritization of the land release process in mine-contaminated areas, compared to existing approaches.
کلمات کلیدی مقاله (فارسی):
خطر مین های زمینی؛ رگرسیون لجستیک؛ رگرسیون جغرافیایی وزن دار؛ اقدام انسان دوستانه مین روبی
کلمات کلیدی مقاله (انگلیسی):
• Landmine risk; Logistic regression; Geographically weighted regression; Humanitarian mine action
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.