معماری زمان تاخیر شبکه های عصبی آبشاری برای مدلسازی پیش بینی زمان وابستگی در شروع پیش بینی
ARCHITECTURE FOR MODELING TIME-DEPENDENT PREDICTOR IN ONSET PREDICTION
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
thescipub.com |
سال انتشار |
2014 |
فرمت فایل |
PDF |
کد مقاله |
23767 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
The occurrence of rain before the real start of a rainy season often mislead farmers into thinking that rainy
season has started and suggesting them to start planting immediately. In reality, rainy season has not started
yet, causing the already-planted rice seed to experience dehydration. Therefore, a model that can predict the
onset of rainy season is required, so that draught disaster can be avoided. This study presents Time Delay-
Cascading Neural Network (TD-CNN) which deals with situations where the response variable is
determined by a number of time-dependent inter-related predictors. The proposed model is used to predict
the onset in Pacitan District Indonesia based on Southern Oscillation Index (SOI). The Leave One Out
(LOO) cross-validation with series data 1982-2012 are used in order to compare the accuracy of the
proposed model with the Back-Propagation Neural Network (BPNN) and Cascading Neural Network
(CNN). The experiment shows that the accuracy of the proposed model is 0.74, slightly above than the two
other models, BPNN and CNN which are 0.71 and 0.72, respectively.
کلمات کلیدی مقاله (فارسی):
شاخص نوسان جنوبي ، فصل باراني ، شروع پس انتشار ، شبکه عصبي آبشاري
کلمات کلیدی مقاله (انگلیسی):
Keywords: Southern Oscillation Index, Rainy Season, Onset, Back-Propagation, Cascading Neural Network
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.