شبیه سازی عددی جریان های قابل تراکم با استفاده از مدل چند سیال
Numerical simulations of compressible flows using multi-fluid models
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
International Journal of Multiphase Flow |
سال انتشار |
2015 |
فرمت فایل |
PDF |
کد مقاله |
18763 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Numerical simulations of two-fluid flow models based on the full Navier–Stokes equations are presented. The models include six and seven partial differential equations, namely, six- and seven-equation models. The seven-equation model consists of a non-conservative equation for volume fraction evolution of one of the fluids and two sets of balance equations. Each set describes the motion of the corresponding fluid, which has its own pressure, velocity, and temperature. The closure is achieved by two stiffened gas equations of state. Instantaneous relaxation towards equilibrium is achieved by velocity and pressure relaxation terms. The six-equation model is deduced from the seven-equation model by assuming an infinite rate of velocity relaxation. In this model, a single velocity is used for both fluids. The numerical solutions are obtained by applying the Strang splitting technique. The numerical solutions are examined in a set of one, two, and three dimensions for both the six- and seven-equation models. The results indicate very good agreement with the experimental results. There is an insignificant difference between the results of the two models, but the six-equation model is much more economical compared to the seven-equation model.
کلمات کلیدی مقاله (فارسی):
تراکم جریان دو سیال، مدل شش معادله، مدل هفت معادله، مدل چند سیال، تعامل شوک حباب، بی ثباتی ریلی تیلور، ناپایداری کلوین-هلمهولتز، طرح های با رزولوشن بالا
کلمات کلیدی مقاله (انگلیسی):
Compressible two-fluid flow, Six-equation model, Seven-equation model, Multi-fluid model, Shock-bubble interaction, Rayleigh–Taylor instability, Kelvin–Helmholtz instability, High-resolution scheme
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.