روش user-friendly برای محاسبه انتگرال نامعین توابع نوسانی
A user-friendly method for computing indefinite integrals of oscillatory functions
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Journal of Computational and Applied Mathematics |
سال انتشار |
2016 |
فرمت فایل |
PDF |
کد مقاله |
24468 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
For indefinite integrals Q(f; x, w) = ∫-1 xf(t)e iwtdt (x ϵ [−1, 1]) Torii and the
first author (1987) developed a quadrature method of Clenshaw-Curtis (C-C) type. Its improvement was made and combined with Sidi’s mW-transformation by Sidi and the first author (1996) to compute infinite oscillatory integrals. The improved method per se, however, has not been elucidated in its attractive features, which here we reveal with new results and its detailed algorithm. A comparison with a method of C-C type for definite integrals Q(f; 1, w) due to Dom´ınguez, Graham and Smyshlyaev (2011) suggests that a smaller number of computations is required in our method. This is achieved by exploiting recurrence and normalization relations and their associated linear system. We show their convergence and stability properties and give a verified truncation error bound for a result computed from the linear system with finite dimension. For f(z) analytic on and inside an ellipse in the complex plane z the error of the approximation to Q(f; x, w) of the improved method is shown to be bounded uniformly. Numerical examples illustrate the stability and performance of the method.
کلمات کلیدی مقاله (فارسی):
نقش تربیع، الگوریتم، انتگرال نوسانی ، چبیشف الحاقی، تجزیه و تحلیل خطا، تقریب یکنواخت، بازگشت سه جمله ای
کلمات کلیدی مقاله (انگلیسی):
quadrature rule, algorithm, oscillatory integral, Chebyshev interpolation, error analysis, uniform approximation, three-term recurrence
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.