روش های اکتشافی گسسته برای شبکه های بیزی
HEURISTIC DISCRETIZATION METHOD FOR BAYESIAN NETWORKS
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
thescipub.com |
سال انتشار |
2014 |
فرمت فایل |
PDF |
کد مقاله |
23735 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Bayesian Network (BN) is a classification technique widely used in Artificial Intelligence. Its structure is a
Direct Acyclic Graph (DAG) used to model the association of categorical variables. However, in cases where
the variables are numerical, a previous discretization is necessary. Discretization methods are usually based on
a statistical approach using the data distribution, such as division by quartiles. In this article we present a
discretization using a heuristic that identifies events called peak and valley. Genetic Algorithm was used to
identify these events having the minimization of the error between the estimated average for BN and the actual
value of the numeric variable output as the objective function. The BN has been modeled from a database of
Bit’s Rate of Penetration of the Brazilian pre-salt layer with 5 numerical variables and one categorical variable,
using the proposed discretization and the division of the data by the quartiles. The results show that the
proposed heuristic discretization has higher accuracy than the quartiles discretization.
کلمات کلیدی مقاله (فارسی):
شبکه بيزي ، گسسته ، بهينه سازي جهاني ، الگوريتم ژنتيک ، اکتشاف
کلمات کلیدی مقاله (انگلیسی):
Keywords: Bayesian Network, Discretization, Global Optimization, Genetic Algorithm, Heuristic
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.