روش نظم چبیشف برای یک نوع از معادلات انتگرال فردهلم با هسته های بسیار نوسانی
A Chebyshev collocation method for a class of Fredholm integral equations with highly oscillatory kernels
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Journal of Computational and Applied MathematicsS0377-0427(2015)00639-1 |
سال انتشار |
2015 |
فرمت فایل |
PDF |
کد مقاله |
25150 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Based on the Filon-Clenshaw-Curtis method for highly oscillatory integrals, and together with the Sommariva’s result [37] for Clenshaw-Curtis quadrature rule, we present a Chebyshev collocation method for a class of Fredholm integral equations with highly oscillatory kernels, whose unknown function is assumed to be less oscillatory than the kernel. In the proposed method, the Filon-Clenshaw-Curtis method is used to compute the involved oscillatory integrals, which makes the proposed method very precise. By solving only a small system of linear equations, we can obtain a very satisfactory numerical solution. The performance of the presented method is illustrated by several numerical examples. Compared with the method proposed by Li et al. [31], this method enjoys a lower computational complexity. Furthermore, numerical examples show that the presented method has a competitive advantage on the accuracy compared with the method in [31].
کلمات کلیدی مقاله (فارسی):
معادله انتگرال فردهلم، انتگرال بسیار نوسانی ، روش نظم چبیشف ، روش Filon-Clenshaw-Curtis ، چندجملهای چبیشف
کلمات کلیدی مقاله (انگلیسی):
Fredholm integral equation, highly oscillatory integral, Chebyshev collocation method, Filon-Clenshaw-Curtis method, Chebyshev polynomials
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.