روش معادله انتگرال حجم برای مسائل پراکندگی دوره برای معادلات ماکسول ناهمسانگرد
A volume integral equation method for periodic scattering problems for anisotropic Maxwell’s equations
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Applied Numerical Mathematics S0168-9274(2015)00117-8 |
سال انتشار |
2015 |
فرمت فایل |
PDF |
کد مقاله |
24331 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
This paper presents a volume integral equation method for an electromagnetic scattering problem for three-dimensional Maxwell’s equations in the presence of a biperiodic, anisotropic, and possibly discontinuous dielectric scatterer. Such scattering problem can be reformulated as a strongly singular volume integral equation (i.e., integral operators that fail to be weakly singular). In this paper, we firstly prove that the strongly singular volume integral equation satisfies a G˚ arding-type estimate in standard Sobolev spaces. Secondly, we rigorously analyze a spectral Galerkin method for solving the scattering problem. This method relies on the periodization technique of Gennadi Vainikko that allows us to efficiently evaluate the periodized integral operators on trigonometric polynomials using the fast Fourier transform (FFT). The main advantage of the method is its simple implementation that avoids for instance the need to compute quasiperiodic Green’s functions. We prove that the numerical solution of the spectral Galerkin method applied to the periodized integral equation converges quasioptimally to the solution of the scattering problem. Some numerical examples are provided for examining the performance of the method.
کلمات کلیدی مقاله (فارسی):
ندارد
کلمات کلیدی مقاله (انگلیسی):
ندارد
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.