روش مرتبه دوم ضعیف S-ROCK برای معادلات دیفرانسیل اتفاقی Stratonovich
Weak second order S-ROCK methods for Stratonovich stochastic differential equations
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Journal of Computational and Applied Mathematics |
سال انتشار |
2012 |
فرمت فایل |
PDF |
کد مقاله |
21484 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
It is well known that the numerical solution of stiff stochastic ordinary differential
equations leads to a step size reduction when explicit methods are used. This has led to a plethora of implicit or semi-implicit methods with a wide variety of stability properties. However, for stiff stochastic problems in which the eigenvalues of a drift term lie near the negative real axis, such as those arising from stochastic partial differential equations, explicit methods with extended stability regions can be very effective. In the present paper our aim is to derive explicit Runge–Kutta schemes for non-commutative Stratonovich stochastic differential equations, which are of weak order two and which have large stability regions. This will be achieved by the use of a technique in Chebyshev methods for ordinary differential equations.
کلمات کلیدی مقاله (فارسی):
روش صریح، میانگین مربع پایدار، رانگ-کوتا تصادفی متعامد ، روش چبیشف
کلمات کلیدی مقاله (انگلیسی):
Explicit method, Mean square stability, Stochastic orthogonal Runge–Kutta, Chebyshev method
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.