روش طرح ریزی تکرار اصلاح سازگار با معادله انتگرال غیر خطی
A modified iterated projection method adapted to a nonlinear integral equation
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Applied Mathematics and Computation 276(2016)432–441 |
سال انتشار |
2016 |
فرمت فایل |
PDF |
کد مقاله |
24350 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
The classical way to tacklea nonlinear Fredholm integral equation of the second kind is to adapt the discretization scheme from the linear case. The Iterated projection method is a popular method since it shows, in most cases, super convergence and it is easy to implement. The problem is that the accuracy of the approximation is limited by the mesh size discretization. Better approximations can only be achieved for fined is cretizations and the size of the linear system to be solved then becomes very large: its dimension grows up with an order propotional to the square of the mesh size. In order to overcome this difficulty, we propose a novel approach to first linearize the nonlinear equation by a Newton-type method and only then to apply the Iterated projection method to each of the linear equations is sued from the Newton method. We prove that, for any value (large enough) of the discretization parameter, the approximation tends to the exact solution when the number of Newton iterations tends to infinity, so that we can attain any desired accuracy. Numerical experiments confirm this theoretical result.
کلمات کلیدی مقاله (فارسی):
معادلات غیر خطی، روش نیوتن مانند، تقریب طرح تأثیری، معادلات انتگرال
کلمات کلیدی مقاله (انگلیسی):
Nonlinear equations, Newton-like methods, Iterated projection approximation, Integral equations
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.