روش سری تیلور برای حل مسائل خطی مقدار مرزی اولیه برای معادلات دیفرانسیل با مشتقات جزئی
A Taylor series method for the solution of the linear initial–boundary-value problems for partial differential equations
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Computers and Mathematics with Applications |
سال انتشار |
2013 |
فرمت فایل |
PDF |
کد مقاله |
18247 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
In this paper, a numerical method for solving the linear initial problems for partial
differential equations with constant coefficients and analytic initial conditions in two and three independent variables is presented. The technique is based upon the Taylor series expansion. Properties and the operational matrices for partial derivatives for the Taylor series in two and three variables are first presented. These properties are then used to reduce the solution of partial differential equations in two and three independent variables to a system of algebraic equations. The procedure can be extended to linear partial differential equations with more independent variables. The Taylor series may not converge if the solution is not analytic in the whole domain, however, the present method can be applied to boundary-value problems for linear partial differential equations, when
the solution is analytic in the interior of the domain and also on some open subsets for each distinct part of the boundary. The method is computationally very attractive and applications are demonstrated through illustrative examples.
کلمات کلیدی مقاله (فارسی):
سری تیلور، ماتریس های عملیاتی، مسائل مقدارمرزی اولیه ، حل معادلات دیفرانسیل با مشتقات جزئی
کلمات کلیدی مقاله (انگلیسی):
Taylor series, Operational matrices, Initial– boundary-value problems, Solution of partial differential equations
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.