روش تکرار غیر خطی برای حل یک دستگاه دو بعدی غیر خطی همراه از معادلات سهموی و هذلولی
A nonlinear iteration method for solving a two-dimensional nonlinear coupled system of parabolic and hyperbolic equations
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Journal of Computational and Applied Mathematics |
سال انتشار |
2010 |
فرمت فایل |
PDF |
کد مقاله |
22306 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
A nonlinear iteration method for solving a class of two-dimensional nonlinear coupled systems of parabolic and hyperbolic equations is studied. A simple iterative finite difference scheme is designed; the calculation complexity is reduced by decoupling the nonlinear system, and the precision is assured by timely evaluation updating. A strict theoretical analysis is carried out as regards the convergence and approximation properties of the iterative scheme, and the related stability and approximation properties of the nonlinear fully implicit finite difference (FIFD) scheme. The iterative algorithm has a linear constringent ratio; its solution gives a second-order spatial approximation and firstorder temporal approximation to the real solution. The corresponding nonlinear FIFD scheme is stable and gives the same order of approximation. Numerical tests verify the results of the theoretical analysis. The discrete functional analysis and inductive hypothesis reasoning techniques used in this paper are helpful for overcoming difficulties arising from the nonlinearity and coupling and lead to a related theoretical analysis for nonlinear FI schemes.
کلمات کلیدی مقاله (فارسی):
تفاضلات متناهی ، غیر خطی، روش تکراری، دستگاه پیوسته معادلات سهموی و هذلولی، آنالیز عددی
کلمات کلیدی مقاله (انگلیسی):
Finite difference, Nonlinearity, Iterative method, Coupled system of parabolic and hyperbolic equations, Numerical analysis
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.