روشی کارآمد برای کشف الگوهای ترتیبی براساس فاصله
EFFICIENT APPROACH TO DISCOVER INTERVAL-BASED SEQUENTIAL PATTERNS
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
thescipub.com |
سال انتشار |
2013 |
فرمت فایل |
PDF |
کد مقاله |
26690 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
In most of the sequential pattern mining methodology they have concentrated only on time point base event
data. But some research efforts have detailed the mining patterns from time interval based event data. In
many application most of the events are occurred at time interval based event not a point based interval for
example patient affected by the certain time period. Our goal is to mine the frequently occurred sequential
patterns in the database. In this study we have introduced a new algorithm namely KPrefixspan by
modifying the TPrefixspan algorithm to overcome the demerits of that algorithm. Here new approach called
refined database can reduce the scanning time extremely since the unsupported events are removed at each
projection also result of the sequential pattern is extremely precise. Experiments constructed for synthetic
datasets. From the experimental results we reduced the running time almost 60% and also reduce the
memory usage almost 25% when compared to the existing TPrefixspan algorithm.
کلمات کلیدی مقاله (فارسی):
داده کاوي ، بيماري متوالي ، پايگاه تصفيه شده ، پروژه پايگاه
کلمات کلیدی مقاله (انگلیسی):
Keywords: Datamining, TPrefixspan, KPrefixspan, Sequential Disease, Refined Database, Projected Database
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.