راه حل دقیق از یک کلاس از معادله انتگرال ولترا با هسته ضعیف منحصر به فرد
The exact solution of a class of Volterra integral equation with weakly singular kernel
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Applied Mathematics and Computation |
سال انتشار |
2011 |
فرمت فایل |
PDF |
کد مقاله |
20928 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
In this paper, the weakly singular Volterra integral equations with an infinite set of solutions are investigated. Among the set of solutions only one particular solution is smooth and all others are singular at the origin. The numerical solutions of this class of equations have been a difficult topic to analyze and have received much previous investigation. The aim of this paper is to present a numerical technique for giving the approximate solution to the only smooth solution based on reproducing kernel theory. Applying weighted integral, we provide a new definition for reproducing kernel space and obtain reproducing kernel function. Using the good properties of reproducing kernel function, the only smooth solution
is exactly expressed in the form of series. The n-term approximate solution is obtained by truncating the series. Meanwhile, we prove that the derivative of approximation converges to the derivative of exact solution uniformly. The final numerical examples compared with other methods show that the method is efficient
کلمات کلیدی مقاله (فارسی):
منحصر به فرد ضعیف ، معادلات انتگرال ولترا، روش Reproducing kernel ، وزن انتگرال، راه حل تقریبی
کلمات کلیدی مقاله (انگلیسی):
Weakly singular, Volterra integral equations, Reproducing kernel method, Weighted integral, Approximate solution
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.