حل عددی خطی ولترا معادلات انتگرال نوع دوم با گرادیان حاد
Numerical solution of linear Volterra integral equations of the second kind with sharp gradients
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Journal of Computational and Applied Mathematics 235 |
سال انتشار |
2011 |
فرمت فایل |
PDF |
کد مقاله |
20905 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Collocation methods are a well-developed approach for the numerical solution of smooth and weakly singular Volterra integral equations. In this paper, we extend these methods through the use of partitioned quadrature based on the qualocation framework, to allow the efficient numerical solution of linear, scalar Volterra integral equations of the second kind with smooth kernels containing sharp gradients. In this case, the standard collocation methods may lose computational efficiency despite the smoothness of the kernel. We illustrate how the qualocation framework can allow one to focus computational effort where necessary through improved quadrature approximations, while keeping the solution approximation fixed. The computational performance improvement introduced by our new method is examined through several test examples. The final example we consider is the original problem that motivated this work: the problem of calculating the probability density associated with a continuous-time random walk in three dimensions that may be killed at a fixed lattice site. To demonstrate how separating the solution approximation from quadrature approximation may improve computational performance, we also compare our new method to several existing Gregory, Sinc, and global spectral methods, where quadrature approximation and solution approximation are coupled
کلمات کلیدی مقاله (فارسی):
معادله انتگرال خطی ولترا ، ترتیب، تقسیمبندی تربیع ، Qualocation
کلمات کلیدی مقاله (انگلیسی):
Linear Volterra integral equation, Collocation, Partitioned quadrature, Qualocation
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.