حساسیت مدل های بهره وری ناخالص اولیه به منطقه هواشناسی و برگ مجبور: مقایسه بین روش پنمن مانتیث ecophysiological و الگوریتم بهره وری MODIS نور استفاده
The sensitivity of models of gross primary productivity to meteorological and leaf area forcing: A comparison between a Penman–Monteith ecophysiological approach and the MODIS Light-Use Efficiency algorithm
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Agricultural and Forest Meteorology, Volumes 218–219 |
سال انتشار |
2016 |
فرمت فایل |
PDF |
کد مقاله |
20201 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
The current trend in land-surface and carbon modelling development is largely dichotomous: simple algorithms which minimise the number of biophysical parameters and meteorological drivers versus complex ecophysiologically based models which do not. Understanding the sensitivity of both types of approach to current uncertainties in Leaf Area Index (LAI) and meteorological forcing is an important step in producing accurate model predictions of land–atmosphere carbon exchange. We force two quite disparate models (the Moderate Resolution Imaging Spectroradiometer (MODIS) Light-Use Efficiency (LUE) algorithm and the ecophysiological model JULES-SF) with two LAI forcings (satellite and site-normalised) and two meteorologies (tower-based and reanalysis). Simulations are conducted for 67 sites and 10 vegetation classes. The sensitivity of modelled Gross Primary Productivity (GPP) to both LAI and meteorological forcing, thus derived, is compared with model bias against observed carbon fluxes. Our most novel findings are as follows: uncertainty in model formulation (LUE versus ecophysiological) is at least as important (20% change in simulated GPP) as that pertaining to LAI and meteorological forcing (10–20% change). However, all these uncertainties are modest compared to both model bias (≤30%) and inconsistencies between observational datasets used for model calibration (45%). The ecophysiological model is more sensitive to meteorology (20% change in simulated GPP) than the LUE algorithm (10%) owing to the former's reliance on precipitation and shortwave radiation to calculate, respectively, the internal balances of water and energy.
کلمات کلیدی مقاله (فارسی):
چرخه کربن؛ مدل مبتنی بر فرایند؛ مدیس (MODIS)؛ FLUXNET؛ نور راندمان استفاده از (لو)؛ شاخص سطح برگ (LAI)
کلمات کلیدی مقاله (انگلیسی):
Carbon cycle; Process-based models; Moderate Resolution Imaging Spectroradiometer (MODIS); FLUXNET; Light-Use Efficiency (LUE); Leaf Area Index (LAI)
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.