تقسیم بندی تصاویر پزشکی برای تشریح استخراج دانش
MEDICAL IMAGE SEGMENTATION FOR ANATOMICAL KNOWLEDGE EXTRACTION
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
thescipub.com |
سال انتشار |
2014 |
فرمت فایل |
PDF |
کد مقاله |
23894 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Computed Tomography-Angiography (CTA) images of the abdomen, followed by precise segmentation and
subsequent computation of shape based features of liver play an important role in hepatic surgery,
patient/donor diagnosis during liver transplantation and at various treatment stages. Nevertheless, the issues
like intensity similarity and Partial Volume Effect (PVE) between the neighboring organs; left the task of
liver segmentation critical. The accurate segmentation of liver helps the surgeons to perfectly classify the
patients based on their liver anatomy which in turn helps them in the treatment decision phase. In this
study, we propose an effective Advanced Region Growing (ARG) algorithm for segmentation of liver
from CTA images. The performance of the proposed technique was tested with several CTA images
acquired across a wide range of patients. The proposed ARG algorithm identifies the liver regions on
the images based on the statistical features (intensity distribution) and orientation value. The proposed
technique addressed the aforementioned issues and been evaluated both quantitatively and
qualitatively. For quantitative analysis proposed method was compared with manual segmentation
(gold standard). The method was also compared with standard region growing.
کلمات کلیدی مقاله (فارسی):
تصوير کامپيوتري تومورگرافي - آنژوگرافي ، منطقه در حال رشد ، تقسيم بندي کبد ، طبقه بندي تصوير شکل براساس ويژگي ها
کلمات کلیدی مقاله (انگلیسی):
Keywords: CTA Image, Region Growing, Liver Segmentation, Image Classification, Shape-Based Features
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.