تقریب عددی انتگرال نوسانی تئوری موج خطی کشتی
Numerical approximation of oscillatory integrals of the linear ship wave theory
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Applied Numerical Mathematics |
سال انتشار |
2017 |
فرمت فایل |
PDF |
کد مقاله |
24480 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Green’s function of the problem describing steady forward motion of bodies in an open ocean in the framework of the linear surface wave theory (the function is often referred to as Kelvin’s wave source potential) is considered. Methods for numerical evaluation of the so-called ‘single integral’ (or, in other words, ‘wavelike’) term, dominating in the representation of Green’s function in the far field, are developed. The difficulty in the numerical evaluation is due to integration over infinite interval of the function containing two differently oscillating factors and the presence of stationary points. This work suggests two methods to approximate the integral. First of them is based on the idea put forward by D. Levin in 1982 — evaluation of the integral is converted to finding a particular slowly oscillating solution of an ordinary differential equation. To overcome well-known numerical instability of Levin’s collocation method, an alternative type of collocation is used; it is based on a barycentric Lagrange interpolation with a clustered set of nodes. The second method for evaluation of the wavelike term involves application of the steepest descent method and Clenshaw–Curtis quadrature. The methods are numerically tested and compared.
کلمات کلیدی مقاله (فارسی):
امواج کشتی، منبع موج کلوین ، انتگرال، روش لوین نوسانی، تربیع Clenshaw کورتیس، گرانیگاهی لاگرانژ الحاق
کلمات کلیدی مقاله (انگلیسی):
Ship waves, Kelvin wave source, Oscillatory integral, Levin method, Clenshaw–Curtis quadrature, Barycentric Lagrange interpolation
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.