تفسیر P-adic به برخی هویت انتگرال چند جمله ای هال Littlewood
A p-adic interpretation of some integral identities for Hall–Littlewood polynomials
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Journal of Combinatorial Theory, SeriesA145 |
سال انتشار |
2017 |
فرمت فایل |
PDF |
کد مقاله |
24614 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
If one restricts an irreducible representation V λ of GL2nto the orthogonal group (respectively the symplectic group), the trivial representation appears with multiplicity one if and only if all parts of λ are even (resp. the conjugate partition λ’is even). One can rephrase this statement as an integral identity involving Schur functions, the corresponding characters. Rains and Vazirani considered q, t-generalizations of such integral identities, and proved them using affine Hecke algebra techniques. In a recent paper, we investigated the q=0limit (Hall–Little wood), and provided direct combinatorial arguments for these identities; this approach led to various generalizations and a finite-dimensional analog of a recent summation identity of Warnaar. In this paper, we reformulate some of these results using p-adic representation theory; this parallels the representation-theoretic interpretation in the Schur case. The nonzero values of the identities are interpreted as certain p-adic measure counts. This approach provides a p-adic interpretation of these identities (and a new identity), as well as independent proofs. As an application, we obtain a new Little wood summation identity that generalizes a classical result due to Little wood and Macdonald. Finally, our p-adic method also leads to a generalized integral identity
کلمات کلیدی مقاله (فارسی):
چند جمله ای هال Littlewood، هویت انتگرال، نظریه نمایندگی P-adic
کلمات کلیدی مقاله (انگلیسی):
Hall–Littlewood polynomials, Integral identities, p-adic representation theory
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.