ترکیبی برای حل معادله آلن کاهنFEM
A hybrid FEM for solving the Allen–Cahn equation
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Applied Mathematics and Computation 244 |
سال انتشار |
2014 |
فرمت فایل |
PDF |
کد مقاله |
17087 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
We present an unconditionally stable hybrid finite element method for solving the Allen–Cahn equation, which describes the temporal evolution of a non-conserved phase-field during the antiphase domain coarsening in a binary mixture. Its various modified forms have been applied to image analysis, motion by mean curvature, crystal growth, topology optimization, and two-phase fluid flows. The hybrid method is based on the operator splitting method. The equation is split into a heat equation and a nonlinear equation. An implicit finite element method is applied to solve the diffusion equation and then the nonlinear equation is solved analytically. Various numerical experiments are presented to confirm the accuracy and efficiency of the method. Our simulation results are consistent with previous theoretical and numerical results.
کلمات کلیدی مقاله (فارسی):
معادله آلن کاهن، روش المان محدود، روش تقسیم عامل، روش پایداری بی قید و شرط
کلمات کلیدی مقاله (انگلیسی):
Allen–Cahn equation, Finite element method, Operator splitting method, Unconditionally stable scheme
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.