تابع پایه شعاعی شبکه الحاق متقابل با بستگی منحصر به فرد برای نسبت دادن مقدار موجود
RADIAL BASIS FUNCTION NETWORK DEPENDENT EXCLUSIVE MUTUAL INTERPOLATION FOR MISSING VALUE IMPUTATION
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
thescipub.com |
سال انتشار |
2013 |
فرمت فایل |
PDF |
کد مقاله |
26727 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
The success of data mining relies on the purity of the data set. Before performing the data mining, the data has
to be cleaned. An unprocessed data set may contain noisy or missing values which is a critical research issue in
the pre-processing stage. Imputation methods are being used to solve the missing value problems. In this
proposed work, a machine learning based imputation method is proposed by using the mutual information by
exclusively interpolating two different section of the same dataset. For designing the proposed model, a radial
basis function based neural network has been used. The performance of the proposed algorithm has been
measured with respect to different rate or percentage of missing values in the data set and the results has been
compared with existing simple and efficient imputation methods also. To evaluate the performance, the
standard WDBC data set has been used. The proposed algorithm performs well and was able to impute the
missing values even in the worst cases with more than 50% of missing values. Instead of using simple quality
measure such as Mean Square Error (MSE) to evaluate the imputed data quality, in this study, the quality is
measured in terms of classification performance. The results arrived were more significant and comparable.
کلمات کلیدی مقاله (فارسی):
داده کاوي ، پيش پردازش ، روش بستن
کلمات کلیدی مقاله (انگلیسی):
Keywords: Datamining, Preprocessing, Imputation Methods
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.