بهبود روش Multiquadric برای معادلات دیفرانسیل بیضوی با مشتقات جزئی PDE به ترتیب روی مرز
Improved Multiquadric Method for Elliptic Partial Differential Equations via PDE Collocation on the Boundary
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Computers and Mathematics with Applications |
سال انتشار |
2002 |
فرمت فایل |
PDF |
کد مقاله |
18199 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
The multiquadric radial basis function (MQ) method is a recent meshless collocation method with global basis functions. It was introduced for discretizing partial differential equations (PDEs) by Kansa in the early 1990s. The MQ method was originally used for interpolation of scattered data, and it was shown to have exponential convergence for interpolation problems. In [l], we have extended the KansaMQ method to numerical solution and detection of bifurcations in 1D and 2D parameterized nonlinear elliptic PDEs. We have found there that the modest size nonlinear systems resulting from the MQ discretization can be efficiently continued by a standard continuation software, such as AUTO. We have observed high accuracy with a small number of unknowns, as compared with most known results from the literature. In this paper, we formulate an improved Kansa-MQ method with PDE collocation on the boundary (MQ PDECB): we add an additional set of nodes (which can lie inside or outside of the domain) adjacent to the boundary and, correspondingly, add an additional set of collocation equations obtained via collocation of the PDE on the boundary. Numerical results are given that show a considerable improvement in accuracy of the MQ PDECB method over the Kansa-MQ method, with both methods having exponential convergence with essentially the same rates.
کلمات کلیدی مقاله (فارسی):
توابع پایه شعاعی، روش Multiquadric، حل عددی، پیوستگی، شاخه، PDE ها بیضوی غیر خطی
کلمات کلیدی مقاله (انگلیسی):
Radial basis functions, Multiquadric method, Numerical solution, Continuation, Bifurcations, Nonlinear elliptic PDEs.
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.