ورود به سایت

در سایت حساب کاربری ندارید؟ ثبت نام در سایت (به زودی!)

ثبت نام

دانلود انواع مقالات آی اس آی

دسته بندی مقالات

با عضویت در سایت مقاله یاب از تخفیف ویژه بهرمند شوید! عضويت (به زودی!)
تاریخ امروز
پنج شنبه, ۴ بهمن

باند آموزنده برای سبز از راه دور برآورد شاخص سطح برگ در C3 و C4 محصولات

Informative spectral bands for remote green LAI estimation in C3 and C4 crops

نویسندگان

این بخش تنها برای اعضا قابل مشاهده است

ورودعضویت
اطلاعات مجله Agricultural and Forest Meteorology, Volumes 218–219
سال انتشار 2016
فرمت فایل PDF
کد مقاله 20273

پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.

اضافه‌کردن به سبدخرید

چکیده (انگلیسی):

Green leaf area index (LAI) provides insight into the productivity, physiological and phenological status of vegetation. Measurement of spectral reflectance offers a fast and nondestructive estimation of green LAI. A number of methods have been used for the estimation of green LAI; however, the specific spectral bands employed varied widely among the methods and data used. Our objectives were (i) to find informative spectral bands retained in three types of methods, neural network (NN), partial least squares (PLS) regression and vegetation indices (VI), for estimating green LAI in maize (a C4 species) and soybean (a C3 species); (ii) to assess the accuracy of the algorithms estimating green LAI using a minimal number of bands for each crop and generic algorithms for the two crops combined.Hyperspectral reflectance and green LAI of irrigated and rainfed maize and soybean were taken during eight years of observations (altogether 24 field-years) in very different weather conditions. The bands retained in the best NN, PLS and VI methods were in close agreement. The validity of these bands was further confirmed via the uninformative variable elimination PLS technique. The red edge and the NIR bands were selected in all models and were found the most informative. Identifying informative spectral bands across all four techniques provided insight into spectral features of reflectance specific for each species as well as those that are common to species with different leaf structures, canopy architectures and photosynthetic pathways. The analyses allowed development of algorithms for estimating green LAI in soybean and maize with no re-parameterization. These findings lay a strong foundation for the development of generic algorithms which is crucial for remote sensing of vegetation biophysical parameters.

کلمات کلیدی مقاله (فارسی):

سنجش از دور؛ بازتاب؛ شبکه عصبی؛ حداقل مربعات جزئی؛ شاخص پوشش گیاهی؛ ذرت؛ سویا

کلمات کلیدی مقاله (انگلیسی):

Remote sensing; Reflectance; Neural network; Partial least squares; Vegetation index; Maize; Soybean

پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.

اضافه‌کردن به سبدخرید
کلیه حقوق مادی و معنوی برای ایران مقاله محفوظ است
در حال بارگذاری