ورود به سایت

در سایت حساب کاربری ندارید؟ ثبت نام در سایت (به زودی!)

ثبت نام

دانلود انواع مقالات آی اس آی

دسته بندی مقالات

با عضویت در سایت مقاله یاب از تخفیف ویژه بهرمند شوید! عضويت (به زودی!)
تاریخ امروز
یکشنبه, ۳۱ فروردین

الگوهای سه تایی بهینه سازی شده : مدل بافت جدید با مجموعه ای از الگوهای مطلوب بای تجزیه و تحلیل بافت

OPTIMIZED LOCAL TERNARY PATTERNS: A NEW TEXTURE MODEL WITH SET OF OPTIMAL PATTERNS FOR TEXTURE ANALYSIS 1Madasamy Raja, G. and 2V. Sadasivam

نویسندگان

این بخش تنها برای اعضا قابل مشاهده است

ورودعضویت
اطلاعات مجله thescipub.com
سال انتشار 2013
فرمت فایل PDF
کد مقاله 26614

پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.

اضافه‌کردن به سبدخرید

چکیده (انگلیسی):

Texture analysis is one of the important as well as useful tasks in image processing applications. Many texture
models have been developed over the past few years and Local Binary Patterns (LBP) is one of the simple and
efficient approach among them. A number of extensions to the LBP method have been also presented but the
problem remains challenging in feature vector generation and comparison. As textures are oriented and scaled
differently, a texture model should effectively handle grey-scale variation, rotation variation, illumination
variation and noise. The length of the feature vector in a texture model also plays an important role in deciding
the time complexity of the texture analysis. This study proposes a new texture model, called Optimized Local
Ternary Patterns (OLTP) in the spatial methods of texture analysis. The proposed texture model is based on Local
Ternary Patterns (LTP), which in turn is based on LBP. A new concept called “Level of Optimality” to select the
optimal set of patterns is discussed in this study. This proposed texture model uses only optimal patterns to extract
the textural information from the digital images and thereby reducing the length of the feature vector. This
proposed model is robust to image rotation, grey-scale transformation, histogram equalization and noise. The
results are compared with other widely used texture models by applying classification tests to variety of texture
images from the standard Brodatz texture database. Experimental results prove that the proposed texture model is
robust to grey-scale variation, image rotation, histogram equalization and noise. Experimental results also show
that the proposed texture model improves the classification accuracy and the speed of the classification process.
In all tested tasks, the proposed method outperforms the earlier methods.

کلمات کلیدی مقاله (فارسی):

آمار شباهت اندازه گيري ، سطح بهينگي ، الگوهاي باينري محلي ، الگوهاي محلي سه تايي ، طبقه بندي بافت ، طول انتقال

کلمات کلیدی مقاله (انگلیسی):

Keywords: G-Statistic Similarity Measurement, Level of Optimality, Local Binary Patterns (LBP), Local Ternary Patterns (LTP), Texture Classification, Transition Length

پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.

اضافه‌کردن به سبدخرید
کلیه حقوق مادی و معنوی برای ایران مقاله محفوظ است
در حال بارگذاری