به کار انداختن علامت زدن دسته جمعی برای توصیه به غلبه کردن به شروع مسئله سرما
EXPLOITING SOCIAL TAGS TO OVERCOME COLD START RECOMMENDATION PROBLEM
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
thescipub.com |
سال انتشار |
2014 |
فرمت فایل |
PDF |
کد مقاله |
23843 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
The practice and method of collaboratively creating and managing tags to annotate and categorize content has
resulted in the creation of folksonomy. Folksonomies provide new opportunities and challenges in the field of
recommender systems. Despite the considerable amount of researches done in the context of recommender
systems, the specific problem of integrating tags into standard recommender system algorithms is less
explored than the problem of recommending tags. Collaborative filtering is one of the popular approaches for
providing recommendation. However, despite the popularity of collaborative filtering, to some extent, it could
not recognize the preferences of users in cold-start scenarios, where insufficient preferences are associated to
certain users or items, which leads to degraded recommendation quality. This study presents a collaborative
filtering approach based on the expansion of users’ tags. In this case, semantics between tags can be unveiled
which subsequently resulted in the identification of semantically similar users. Experiment on real-life dataset
shows that our approach outperforms the state-of-the-art tag-aware collaborative filtering approaches in terms
of recommendation quality particularly in the cold-start situation.
کلمات کلیدی مقاله (فارسی):
فيلتر همکاري ، سيستم پيشنهادي ، صوت سنج
کلمات کلیدی مقاله (انگلیسی):
Keywords: Collaborative Filtering, Recommender System, Folksonomy
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.