مقایسه بهینه سازی هجوم ذره ها و روش ژنتیک برای برنامه ریزی جدول زمانی
COMPARISON USING PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM FOR TIMETABLE SCHEDULING
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
thescipub.com |
سال انتشار |
2014 |
فرمت فایل |
PDF |
کد مقاله |
23369 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Lecturer timetable scheduling is an important part in the resource allocation planning. Due to the large amount
of transactions and various related constraints have to be taken into account in timetable scheduling process,
resource manager team shall need a lot of time to the solve the problem. This research is aimed to discuss the
application of Particle Swarm Optimization (PSO) that can be used to automatically generate optimal lecturer
timetable scheduling. Using Software Laboratory Center (SLC) data, some hard constraints are taken into
account such as the assistant should teach according to their qualifications, teaching in their work shift and
doesn’t teach any course that are being taken. Some soft constraints are also considered and the associated
cost function is built based on these hard and soft constraints. Based on the computational results, the
amount of penalty obtained by the PSO is much smaller than the GA on 500th iteration. The calculation is
performed by comparing the amount of penalty that earned each time a hard constraint or soft constraint is
violated by the implementation of PSO or GA to the total penalty obtained when all constraints are violated.
کلمات کلیدی مقاله (فارسی):
بهينه سازي ذرات ، ايجاد محدوديت سخت ، محدوديت نرم ، برنامه زمانبندي
کلمات کلیدی مقاله (انگلیسی):
Keywords: Particle Swarm Optimization, Hard Constraints, Soft Constraints, Timetable Scheduling
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.