یک کلاس از روشهای تکراری با همگرایی مرتبه سوم برای حل معادلات غیر خطی
A class of iterative methods with third-order convergence to solve nonlinear equations
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Journal of Computational and Applied Mathematics |
سال انتشار |
2008 |
فرمت فایل |
PDF |
کد مقاله |
22430 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Algebraic and differential equations generally co-build mathematical models. Either lack or intractability of their analytical solution often forces workers to resort to an iterative method and face the likely challenges of slow convergence, non-convergence or even divergence. This manuscript presents a novel class of third-order iterative techniques in the form of xk+1=gu(xk)=xk+f (xk)u(xk) to solve a nonlinear equation f with the aid of a weight function u. The class currently contains an invert-and-average (gKia), an average-and-invert (gKai), and an invert-and-exponentiate (gKe) branch. Each branch has several members some of which
embed second-order Newton’s (gN), third-order Chebychev’s (gC) or Halley’s (gH) solvers. Class members surpassed stand-alone applications of these three well-known methods. Other methods are also permitted as auxiliaries provided they are at least of second order. Asymptotic convergence constants are calculated. Assignment of class parameters to non-members carries them to a common basis for comparison. This research also generated a one-step “solver” that is usable for post-priori analysis, trouble shooting, and comparison.
کلمات کلیدی مقاله (فارسی):
حل معادله جبری؛ روشهای تکراری؛ تکرار نقطه ثابت؛ شبیه سازی؛ مرتبه همگرایی؛ تعویض مستقیم. تعویض جزئی؛ روش نیوتن؛ روش هالی؛ معادلات غیر خطی؛ شتاب همگرایی
کلمات کلیدی مقاله (انگلیسی):
Algebraic equation solvers; Iterative methods; Fixed-point iterations; Simulation; Convergence order; Direct substitution; Partial substitution; Newton’s method; Halley’s method; Nonlinear equations; Convergence acceleration
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.