ورود به سایت

در سایت حساب کاربری ندارید؟ ثبت نام در سایت (به زودی!)

ثبت نام

دانلود انواع مقالات آی اس آی

دسته بندی مقالات

با عضویت در سایت مقاله یاب از تخفیف ویژه بهرمند شوید! عضويت (به زودی!)
تاریخ امروز
پنج شنبه, ۴ بهمن

بهبود زمستان برآورد عملکرد گندم توسط جذب شاخص سطح برگ از داده های لندست TM و MODIS به مدل WOFOST

Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model

نویسندگان

این بخش تنها برای اعضا قابل مشاهده است

ورودعضویت
اطلاعات مجله Agricultural and Forest Meteorology,Volume 207
سال انتشار 2015
فرمت فایل PDF
کد مقاله 21843

پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.

اضافه‌کردن به سبدخرید

چکیده (انگلیسی):

To predict regional-scale winter wheat yield, we developed a crop model and data assimilation framework that assimilated leaf area index (LAI) derived from Landsat TM and MODIS data into the WOFOST crop growth model. We measured LAI during seven phenological phases in two agricultural cities in China’s Hebei Province. To reduce cloud contamination, we applied Savitzky–Golay (S–G) filtering to the MODIS LAI products to obtain a filtered LAI. We then regressed field-measured LAI on Landsat TM vegetation indices to derive multi-temporal TM LAIs. We developed a nonlinear method to adjust LAI by accounting for the scale mismatch between the remotely sensed data and the model’s state variables. The TM LAI and scale-adjusted LAI datasets were assimilated into the WOFOST model to allow evaluation of the yield estimation accuracy. We constructed a four-dimensional variational data assimilation (4DVar) cost function to account for the observations and model errors during key phenological stages. We used the shuffled complex evolution–University of Arizona algorithm to minimize the 4DVar cost function between the remotely sensed and modeled LAI and to optimize two important WOFOST parameters. Finally, we simulated winter wheat yield in a 1-km grid for cells with at least 50% of their area occupied by winter wheat using the optimized WOFOST, and aggregated the results at a regional scale. The scale adjustment substantially improved the accuracy of regional wheat yield predictions (R2 = 0.48; RMSE = 151.92 kg ha−1) compared with the unassimilated results (R2 = 0.23; RMSE = 373.6 kg ha−1) and the TM LAI results (R2 = 0.27; RMSE = 191.6 kg ha−1). Thus, the assimilation performance depends strongly on the LAI retrieval accuracy and the scaling correction. Our research provides a scheme to employ remotely sensed data, ground-measured data, and a crop growth model to improve regional crop yield estimates.

کلمات کلیدی مقاله (فارسی):

جذب داده ها؛ شاخص سطح برگ؛ مقیاس سازگاری؛ برآورد عملکرد گندم؛ WOFOST

کلمات کلیدی مقاله (انگلیسی):

Data assimilation; Leaf area index; Scale adjustment; Wheat yield estimation; WOFOST

پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.

اضافه‌کردن به سبدخرید
کلیه حقوق مادی و معنوی برای ایران مقاله محفوظ است
در حال بارگذاری