شناسایی یک تابع کنترلی در معادلات دیفرانسیل سهموی با مشتقات جزئی از داده ها ی مرزیoverspecified
Identifying a control function in parabolic partial differential equations from overspecified boundary data
نویسندگان |
این بخش تنها برای اعضا قابل مشاهده است ورودعضویت |
اطلاعات مجله |
Computers and Mathematics with Applications |
سال انتشار |
2007 |
فرمت فایل |
PDF |
کد مقاله |
21590 |
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.
چکیده (انگلیسی):
Determination of an unknown time-dependent function in parabolic partial differential equations, plays a very important role in many branches of science and engineering. In the current investigation, the Adomian decomposition method is used for finding a control parameter p(t) in the quasilinear parabolic equation ut = ux x + p(t)u + φ, in [0, 1] × (0, T ] with known initial and boundary conditions and subject to an additional condition in the form of ∫01k(x)u(x, t)dx = E(t), 0 ≤ t ≤ T which is called the boundary integral overspecification. The main approach is to change this inverse problem to a direct problem and then solve the resulting equation using the well known Adomian decomposition method. The decomposition procedure of Adomian provides the solution in a rapidly convergent series where the series may lead to the solution in a closed form. Furthermore due to the rapid convergence of Adomian’s method, a truncation of the series solution with sufficiently large number of implemented components can be considered as an accurate approximation of the exact solution. This method provides a reliable algorithm that requires less work if compared with the traditional techniques. Some illustrative examples are presented to show the efficiency of the presented method.
کلمات کلیدی مقاله (فارسی):
روش تجزیه آدومیان؛ حل بسته؛ معادلات دیفرانسیل سهموی Quasilinear با مشتقات جزئی، انرژی.overspecification ؛ تابع کنترل
کلمات کلیدی مقاله (انگلیسی):
Adomian decomposition method; Closed form solution; Quasilinear parabolic partial differential equations; Energy overspecification; Control function
پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.