ورود به سایت

در سایت حساب کاربری ندارید؟ ثبت نام در سایت (به زودی!)

ثبت نام

دانلود انواع مقالات آی اس آی

دسته بندی مقالات

با عضویت در سایت مقاله یاب از تخفیف ویژه بهرمند شوید! عضويت (به زودی!)
تاریخ امروز
پنج شنبه, ۴ بهمن

روش تابع منظم پایه شعاعی محلی همراه با زمانی صریح برای معادلات دیفرانسیل با مشتقات جزئی هذلولی

Local radial basis function collocation method along with explicit time stepping for hyperbolic partial differential equations

نویسندگان

این بخش تنها برای اعضا قابل مشاهده است

ورودعضویت
اطلاعات مجله Applied Numerical Mathematics
سال انتشار ••••
فرمت فایل PDF
کد مقاله 18226

پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.

اضافه‌کردن به سبدخرید

چکیده (انگلیسی):

This paper tackles an improved Localized Radial Basis Functions Collocation Method
(LRBFCM) for the numerical solution of hyperbolic partial differential equations (PDEs).
The LRBFCM is based on multiquadric (MQ) Radial Basis Functions (RBFs) and belongs
to a class of truly meshless methods which do not need any underlying mesh. This
method can be implemented on a set of uniform or random nodes, without any a priori
knowledge of node to node connectivity. We have chosen uniform nodal arrangement due
their suitability and better accuracy. Five nodded domains of influence are used in the
local support for the calculation of the spatial partial derivatives. This approach results
in a small interpolation matrix for each data center and hence the time integration has
comparatively low computational cost than the related global method. Different sizes of domain of influence i.e. m = 5, 13 are considered. Shape parameter sensitivity of MQ is handled through scaling technique. The time derivative is approximated by first order forward difference formula. An adaptive upwind technique is used for stabilization of the method. Capabilities of the LRBFCM are tested by applying it to one- and two-dimensional benchmark problems with discontinuities, shock pattern and periodic initial conditions. Performance of the LRBFCM is compared with analytical solution, other numerical methods and the results reported earlier in the literature. We have also made comparison with implicit first order time discretization and first order upwind spatial discretization (FVM1) and implicit second order time discretization and first order upwind spatial discretization (FVM2) as well. Accuracy of the method is assessed as a function of time and space. Numerical convergence is also shown for both one- and two-dimensional test problems. It has been observed that the proposed method is more efficient in terms of less memory requirement and less computational efforts due to one time inversion of 5 × 5 (size of local domain of influence) coefficient matrix. The results obtained through LBRFCM are stable and comparable with the existing methods for a variety of problems with practical
applications.

کلمات کلیدی مقاله (فارسی):

نظم محلی، روش بدون شبکه، توابع پایه شعاعی Multiquadric ((LRBFCM، تبلور دسته ای، معادلات غیر لزج برگر، معادلات دیفرانسیل با مشتقات جزئی هذلولوی، روش عددی

کلمات کلیدی مقاله (انگلیسی):

Local collocation, Meshless methods, Multiquadric Radial Basis Functions (LRBFCM), Batch crystallization, Inviscid Burger’s equations, Hyperbolic partial differential equations, Numerical method

پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.

اضافه‌کردن به سبدخرید
کلیه حقوق مادی و معنوی برای ایران مقاله محفوظ است
در حال بارگذاری