ورود به سایت

در سایت حساب کاربری ندارید؟ ثبت نام در سایت (به زودی!)

ثبت نام

دانلود انواع مقالات آی اس آی

دسته بندی مقالات

با عضویت در سایت مقاله یاب از تخفیف ویژه بهرمند شوید! عضويت (به زودی!)
تاریخ امروز
دوشنبه, ۱ اردیبهشت

پس انتشار اساس کار مدل شعاع عصبی : طبقه بندی شدت بارش برای پیش بینی سیل با استفاده از داده های هواشناسی

Backpropagation Vs. Radial Basis Function Neural Model: Rainfall Intensity Classification For Flood Prediction Using Meteorology Data

نویسندگان

این بخش تنها برای اعضا قابل مشاهده است

ورودعضویت
اطلاعات مجله thescipub.com
سال انتشار 2016
فرمت فایل PDF
کد مقاله 13306

پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.

اضافه‌کردن به سبدخرید

چکیده (انگلیسی):

Rainfall is one of the important weather variables that vary in space and time. High mean daily rainfall (>30 mm) has a high possibility of resulting in flood. Accurate prediction of this variable would save human lives and properties. Soft computing methods have been widely applied in this field. Among the various soft computing methods, Artificial Neural Network (ANN) is the most commonly used methodology. While numerous ANN algorithms were applied, the most commonly applied are the Backpropagation (BPN) and Radial Basis Function (RFN) models. However, there was no research conducted to verify which model among these two produces a superior result. Therefore, this study will fill this gap. In this study, using the meteorology data, the two ANN models were trained to classify the rainfall intensity based on four different classes: Light (<10 mm), moderate (11-30 mm), heavy (31-50 mm) and very heavy (>51 mm). The architecture of the neural networks models based on the different combination of inputs and number of hidden neurons to obtain the optimum classification were verified in this study. The influence of the number of training data on the classification results was also analyzed. Results obtained showed, in term of classification accuracy, BPN model performed better than the RFN model. However, in term of consistency, the RFN model outperformed BPN model.

کلمات کلیدی مقاله (فارسی):

بارش ، طبقه بندی ، پس انتشار ، اساس کار شعاع ، شبکه های عصبی

کلمات کلیدی مقاله (انگلیسی):

Precipitation, Classification, Backpropagation, Radial Basis Function, Neural Networks

پس از پرداخت آنلاین، فوراً لینک دانلود مقاله به شما نمایش داده می شود.

اضافه‌کردن به سبدخرید
کلیه حقوق مادی و معنوی برای ایران مقاله محفوظ است
در حال بارگذاری